FAULHABER2642W015CXR冯哈伯直流
目前机器人专用faulhaber电机运动主要分为轮式、步行以及弹跳等方式,其中弹跳式运动所特有的突然性与爆发性可以使机器人专用faulhaber电机在面对突发状况时迅速地做出反应、躲避风险,正被越来越多的研究人员所关注。本文以单足弹跳机器人专用faulhaber电机作为研究对象,进行了以下方面的研究:首先,对袋鼠运动时各的功能与质量分布进行了分析,从袋鼠运动模型中抽象出了由身体、大腿、小腿三部分组成的单足机器人专用faulhaber电机模型;针对机器人专用faulhaber电机运动分段连续的特点,采用拉格朗日方程法分别针对机器人专用faulhaber电机的着地相和腾空相建立了动力学模型。接着,对单足机器人专用faulhaber电机机械结构与系统平台进行了介绍,搭建了以主控制器模块、传感器模块以及faulhaber电机与驱动模块为主的控制系统平台;对E2faulhaber电机驱动器的工作原理以及μC/OS-II实时内核机理进行了研究,完成了系统平台底层代码的编写,实现了机器人专用faulhaber电机大小腿屈膝伸展的动作。
FAULHABER盘式扁平直流微电机扁平直流微电机 系列 1506...SR 的FAULHABER扁平直流微电机系列 1506...SR精密合金换向名义电压: 3 ... 12 V电流上至: 0,45 mNm空载转速: 12.800 min?1外径: 15 mm长度: 5,5 mm扁平直流微电机 系列 1506...SR IE2-8 的FAULHABER扁平直流微电机系列 1506...SR IE2-8精密合金换向器,内置编码器
名义电压: 3 ... 12 V电流上至: 0,4 mNm空载转速: 15.500 min?1每转线数: 8编码器通道: 2外径: 15 mm长度: 7,8 mm扁平直流微电机 系列 2607...SR 的FAULHABER扁平直流微电机系列 2607...SR精密合金换向名义电压: 6 ... 24 V
电流上至: 3,4 mNm空载转速: 6.600 min?1外径: 26 mm长度: 7 mm扁平直流微电机 系列 2607...SR IE2-16 的FAULHABER扁平直流微电机列 2607...SR IE2-16精密合金换向器,内置编码器
名义电压: 6 ... 24 V电流上至: 3 mNm空载转速: 7.200 min?1
每转线数: 16编码器通道: 2外径: 26 mm长度: 9,2 mm直流扁平无刷微电机 系列 1509...B 的FAULHABER直流扁平无刷微电机系列 1509...B四磁极名义电压: 6 ... 12 V电流上至: 0,45 mNm堵转转矩: 0,95 mNm空载转速: 15.000 min?1外径: 15 mm长度: 8,8 mm直流扁平无刷微电机 系列 2610...B 的FAULHABER直流扁平无刷微电机系列 2610...B四磁极名义电压: 6 ... 12 V电流上至: 2,87 mNm堵转转矩: 7,54 mNm空载转速: 6.400 min?1外径: 26 mm长度: 10,4 mm
直流扁平无刷减速电机 系列 1515...B 的FAULHABER直流扁平无刷减速电机系列 1515...B 名义电压: 6 ... 12 V
连续转矩: 30 mNm峰值转矩: 50 mNm减速比: 6 ... 324外径: 15 mm
长度: 15,2 mm直流扁平无刷减速电机 系列 2622...B 的FAULHABER
直流扁平无刷减速电机系列 2622...B 名义电压: 6 ... 12 V连续转矩: 100 mNm
峰值转矩: 180 mNm减速比: 8 ... 1257外径: 26 mm
长度: 22 mm带集成式转速控制器的电机 系列 2622...B SC 的FAULHABER
带集成式转速控制器的电机系列 2622...B SC内置调速驱动器
名义电压: 6 ... 12 V空载转速: 6.200 min?1外径: 26 mm长度: 22 mm带集成式转速控制器的电机 系列 2610...B SC 的FAULHABER带集成式转速控制器的电机 2610...B SC内置调速驱动器名义电压: 6 ... 12 V上至: 3,25 mNm空载转速: 6.700 min?1长度: 10,4 mm
接着,根据人体结构比例给出了双足机器人专用faulhaber电机机构设计方案,主要包括髋关节、膝关节、踝关节和脚部的设计。为了使所设计的机器人专用faulhaber电机能够模拟人的动作,参考人的各个关节运动范围,定义了机器人专用faulhaber电机各个关节角的运动范围。其次,由于仿人机器人专用faulhaber电机大部分的重量集中在上半身,因此可以把机器人专用faulhaber电机看作是一个倒立摆,根据机器人专用faulhaber电机的结构特点,对机器人专用faulhaber电机采用倒立摆原理进行了离线的步态规划,并通过ZMP判定准则验证了步态的稳定性。再次,利用动力学仿真软件ADAMS建立了双足机器人专用faulhaber电机的虚拟样机,利用Matlab中的Simulink工具箱建立了机器人专用faulhaber电机的控制系统,通过ADAMS/Controls接口模块实现了两者的联合仿真,验证了步态规划、控制算法的有效性,并得到了机器人专用faulhaber电机在步行过程中各个关节的力矩变化曲线,为选择faulhaber电机、减速器等部件提供了依据。
越来越广泛的应用在生产和生活当中。传统的移动式或履带式机器人专用faulhaber电机只能在有限范围内进行活动,已难以满足人类的任务需求。步行机器人专用faulhaber电机以其具有更广泛的地形适应能力,可以拓展人类作业的空间范围,比如可以应用在核电设备,煤矿井下和空间探测等方面,因此开展对步行机器人专用faulhaber电机的研究具有重要意义。在非结构化或危险的环境中,步行机器人专用faulhaber电机需要对不确定环境做出及时反应,否则会导致机器人专用faulhaber电机无法适应环境,比如未及时规划好避障算法而没能躲避障碍。因而实时性能是步行机器人专用faulhaber电机适应环境的基础。
仿真表明,机器人专用faulhaber电机可以适应Φ15~20mm的管道,通过优化分析,使机器人专用faulhaber电机在竖直管道上升爬行时的驱动力达到28N,移动速度达到6mm/s。仿人机器人专用faulhaber电机是一个热门的研究领域,汇集了计算机、电子、通信、自动控制、传感器等多各领域的尖端技术,代表了机电一体化的***成就。双足机器人专用faulhaber电机是仿人机器人专用faulhaber电机研究的基础,关节众多、结构复杂,有必要在物理样机制造之前,建立一套虚拟原理样机系统。本文以双足机器人专用faulhaber电机为研究对象,主要做了以下几方面的工作。首先,回顾和总结了仿人机器人专用faulhaber电机的研究历史和发展现状,对国内外各主要研究机构设计的仿人机器人专用faulhaber电机进行了分析和对比,并介绍了本文研究的主要内容。
FAULHABER2642W015CXR冯哈伯直流