FAULHABER1506N012SR进口电机冯哈勃供应商
本文设计的微小管道机器人专用faulhaber电机,采用三组直流faulhaber电机与丝杠螺母传动装置,通过控制三组faulhaber电机顺序协调动作,实现了机器人专用faulhaber电机的蠕动式前进。利用SolidWorks2005及AutoCAD2006软件设计了全部的机械结构,并对主要的零件做了相关校核。设计的机器人专用faulhaber电机总体尺寸为Φ13×190mm(收缩状态),质量约100g。同时研究了机器人专用faulhaber电机在竖直管道中驱动负载的情况,以及支撑结构适应管径变化的力学调节特征。最后利用ADAMS动力学分析软件,对机构做了运动学和动力学仿真,通过仿真得到了驱动力和移动速度与结构参数之间的关系数据曲线。
FAULHABER盘式扁平直流微电机扁平直流微电机 系列 1506...SR 的FAULHABER扁平直流微电机系列 1506...SR精密合金换向名义电压: 3 ... 12 V电流上至: 0,45 mNm空载转速: 12.800 min?1外径: 15 mm长度: 5,5 mm扁平直流微电机 系列 1506...SR IE2-8 的FAULHABER扁平直流微电机系列 1506...SR IE2-8精密合金换向器,内置编码器
名义电压: 3 ... 12 V电流上至: 0,4 mNm空载转速: 15.500 min?1每转线数: 8编码器通道: 2外径: 15 mm长度: 7,8 mm扁平直流微电机 系列 2607...SR 的FAULHABER扁平直流微电机系列 2607...SR精密合金换向名义电压: 6 ... 24 V
电流上至: 3,4 mNm空载转速: 6.600 min?1外径: 26 mm长度: 7 mm扁平直流微电机 系列 2607...SR IE2-16 的FAULHABER扁平直流微电机列 2607...SR IE2-16精密合金换向器,内置编码器
名义电压: 6 ... 24 V电流上至: 3 mNm空载转速: 7.200 min?1
每转线数: 16编码器通道: 2外径: 26 mm长度: 9,2 mm直流扁平无刷微电机 系列 1509...B 的FAULHABER直流扁平无刷微电机系列 1509...B四磁极名义电压: 6 ... 12 V电流上至: 0,45 mNm堵转转矩: 0,95 mNm空载转速: 15.000 min?1外径: 15 mm长度: 8,8 mm直流扁平无刷微电机 系列 2610...B 的FAULHABER直流扁平无刷微电机系列 2610...B四磁极名义电压: 6 ... 12 V电流上至: 2,87 mNm堵转转矩: 7,54 mNm空载转速: 6.400 min?1外径: 26 mm长度: 10,4 mm
直流扁平无刷减速电机 系列 1515...B 的FAULHABER直流扁平无刷减速电机系列 1515...B 名义电压: 6 ... 12 V
连续转矩: 30 mNm峰值转矩: 50 mNm减速比: 6 ... 324外径: 15 mm
长度: 15,2 mm直流扁平无刷减速电机 系列 2622...B 的FAULHABER
直流扁平无刷减速电机系列 2622...B 名义电压: 6 ... 12 V连续转矩: 100 mNm
峰值转矩: 180 mNm减速比: 8 ... 1257外径: 26 mm
长度: 22 mm带集成式转速控制器的电机 系列 2622...B SC 的FAULHABER
带集成式转速控制器的电机系列 2622...B SC内置调速驱动器
名义电压: 6 ... 12 V空载转速: 6.200 min?1外径: 26 mm长度: 22 mm带集成式转速控制器的电机 系列 2610...B SC 的FAULHABER带集成式转速控制器的电机 2610...B SC内置调速驱动器名义电压: 6 ... 12 V上至: 3,25 mNm空载转速: 6.700 min?1长度: 10,4 mm
也具有十分重要的实际意义。针对上述问题,①提出了基于“类等效”变负载DLDMCS非线性状态空间模型及其模型参数辨识方法。对DLDMCS机理进行深入分析,得到了惯量负载和负载电流间的数学关系,建立了包括惯量负载在内的系统框图,从DLDMCS结构框图及动态响应过程的机理出发,运用“类等效”建模方法,对系统进行了简化建立了包含惯量负载在内的双闭环调速系统非线性状态空间模型,并利用开发的实验平台,通过遗传算法辨识模型参数。②分析了DLDMCS各类负载对DLDMCS的影响,提出了等效惯量负载分析法,并以此为基础研制了惯量负载可变faulhaber电机系统实验平台。该方法以各类负载产生的对应负载电流为基础。
本文主要研究步行机器人专用faulhaber电机的实时性能。以小象机器人专用faulhaber电机为载体,设计并实现了一个具有开放式结构的通用实时控制系统。1.参与小象机器人专用faulhaber电机机械结构的设计和制造。确定机器人专用faulhaber电机的构型,构建机器人专用faulhaber电机运动学正解。对机器人专用faulhaber电机进行结构设计,并参与了样机的制造。2.设计基于PC+运动控制卡结构的控制系统硬件方案。分析了步行机器人专用faulhaber电机的控制系统特点,采用了具有开放式结构的控制系统硬件,即上位机采用PC104,负责人机交互、控制决策和轨迹规划以及传感器信号处理。
2.通过对人体运动捕捉获得的运动步态数据进行处理,获得了适用于所建外骨骼仿真模型的步态数据,进而结合此步态数据进行了外骨骼Adams多体动力学建模与仿真。通过对外骨骼背负不同负载时的外骨骼关节参数进行对比仿真分析,发现***转矩及***功率(瞬间参数)不能有效体现出外骨骼的助力效果。通过仿真获取了外骨骼的faulhaber电机驱动系统参数及液压驱动系统参数。通过对外骨骼关节弹性元件、阻尼元件的添加方法进行分析,发现添加弹性元件能够减小外骨骼关节需求的***转矩绝对值;阻尼元件能够改善关节运动特性,但会产生额外的能量消耗。通过对外骨骼的ZMP(零点转矩)进行仿真分析研究,发现基于ZMP稳定性判据的控制策略不能有效跟踪人体运动。
FAULHABER1506N012SR进口电机冯哈勃供应商