FAULHABER2619S024SR814:1原装冯哈伯微型
(2)针对物流终端系统仓储环境复杂的情况,建立单舵轮AGV运动模型。通过分析,采用激光导航仪对AGV进行引导,确定AGV在仓储环境中的坐标和方位角,并解析AGV行走误差来源。为满足实时性的要求,在行走控制器、转角控制器与工控机之间采用CAN总线,同时利用旋转编码器对AGV的faulhaber电机运行参数实时反馈。(3)针对AGV运行效率低和能耗耗损大的缺点,通过平滑处理优化A*算法搜索出来的路径。再次,因AGV在仓储环境中运行误差大,从而建立AGV轨迹误差模型,其中采用模糊PID算法对AGV的位置、角度误差进行控制。最后,经过matlab仿真和实验得出模糊PID算法对小车已规划好的参考轨迹能够快速跟踪,并且外部的干扰对其影响较小,因而AGV能够满足在仓储环境中安全可靠运行。
FAULHABER盘式扁平直流微电机扁平直流微电机 系列 1506...SR 的FAULHABER扁平直流微电机系列 1506...SR精密合金换向名义电压: 3 ... 12 V电流上至: 0,45 mNm空载转速: 12.800 min?1外径: 15 mm长度: 5,5 mm扁平直流微电机 系列 1506...SR IE2-8 的FAULHABER扁平直流微电机系列 1506...SR IE2-8精密合金换向器,内置编码器
名义电压: 3 ... 12 V电流上至: 0,4 mNm空载转速: 15.500 min?1每转线数: 8编码器通道: 2外径: 15 mm长度: 7,8 mm扁平直流微电机 系列 2607...SR 的FAULHABER扁平直流微电机系列 2607...SR精密合金换向名义电压: 6 ... 24 V
电流上至: 3,4 mNm空载转速: 6.600 min?1外径: 26 mm长度: 7 mm扁平直流微电机 系列 2607...SR IE2-16 的FAULHABER扁平直流微电机列 2607...SR IE2-16精密合金换向器,内置编码器
名义电压: 6 ... 24 V电流上至: 3 mNm空载转速: 7.200 min?1
每转线数: 16编码器通道: 2外径: 26 mm长度: 9,2 mm直流扁平无刷微电机 系列 1509...B 的FAULHABER直流扁平无刷微电机系列 1509...B四磁极名义电压: 6 ... 12 V电流上至: 0,45 mNm堵转转矩: 0,95 mNm空载转速: 15.000 min?1外径: 15 mm长度: 8,8 mm直流扁平无刷微电机 系列 2610...B 的FAULHABER直流扁平无刷微电机系列 2610...B四磁极名义电压: 6 ... 12 V电流上至: 2,87 mNm堵转转矩: 7,54 mNm空载转速: 6.400 min?1外径: 26 mm长度: 10,4 mm
直流扁平无刷减速电机 系列 1515...B 的FAULHABER直流扁平无刷减速电机系列 1515...B 名义电压: 6 ... 12 V
连续转矩: 30 mNm峰值转矩: 50 mNm减速比: 6 ... 324外径: 15 mm
长度: 15,2 mm直流扁平无刷减速电机 系列 2622...B 的FAULHABER
直流扁平无刷减速电机系列 2622...B 名义电压: 6 ... 12 V连续转矩: 100 mNm
峰值转矩: 180 mNm减速比: 8 ... 1257外径: 26 mm
长度: 22 mm带集成式转速控制器的电机 系列 2622...B SC 的FAULHABER
带集成式转速控制器的电机系列 2622...B SC内置调速驱动器
名义电压: 6 ... 12 V空载转速: 6.200 min?1外径: 26 mm长度: 22 mm带集成式转速控制器的电机 系列 2610...B SC 的FAULHABER带集成式转速控制器的电机 2610...B SC内置调速驱动器名义电压: 6 ... 12 V上至: 3,25 mNm空载转速: 6.700 min?1长度: 10,4 mm
但通过机构的合理设计和采用一些辅助措施,仍然可以使其成为性能比较理想,价格比较低的驱动元件。运用串并联综合分析的方法,采用ADAMS机械系统动力学仿真分析软件。对两栖仿生机器蟹步行足进行运动学分析,给出两栖仿生机器蟹各构件运动的模型,并进行了仿真。提出了步行足运动轨迹规划的方法,并在实验中的得到实际应用。建立两栖仿生机器蟹各个运动构件与末端执行器在空间的位置姿态之间的关系,为研究机器蟹的运动特性提供一种高效便捷的方法。采用多CPU结构的控制器。由一个CPU对三条步行足的各个关节进行控制,而整个控制器为多CPU结构,由三个步行足控制器并联成伺服控制层,并由一个主CPU协调控制。采用多层多目标分布式递阶控制系统。
利用倾斜角度与角速度的融合值以及角速度作为直立PID控制的输入,完成对送餐车平衡的控制。以计算所得速度和给定速度之间的偏差作为速度PID控制的输入,实现对送餐车的速度控制。为了跟踪送餐车的行进路线,实现准确的定位,使用3个光电开关RPR220和四电压比较器LM339M构建了3路检测电路,得到了可靠的路线信息,为送餐车的行进和定位提供有力保证。通过两个红外避障传感器E18-D80NK可测得前方不同距离的障碍物,很好的达到了原理中所提出的避障目标。最后引入了基于无线蓝牙模块的串口通信,以便于程序的调试和系统的控制;带中文字库的LCDYB12864-ZA显示送餐车诸如目标餐桌编号,送餐车当前位置等信息。
下位机采用TurboPMAC,进行伺服控制,采用Elmo驱动器和faulhaber电机。本硬件方案具有强大的信息处理能力、良好的扩展性和可性。3.对伺服控制参数进行配置并实现了速度光滑的轨迹插补算法。通过构建faulhaber电机模型与对PMAC和Elmo驱动器伺服控制算法的分析,设定了PID参数、伺服频率等参数,实现了一种利用PVT插补算法来实现速度光滑的轨迹插补。4.实时控制软件的设计与开发。采用LinuxRTAI实时操作系统,编写了PMAC实时驱动程序,并实现了机器人专用faulhaber电机控制的核心线程。5.平台搭建与性能测试。搭建了实时控制系统的软硬件平台,并从操作系统实时性能,驱动程序的实时性能和整个系统对faulhaber电机的控制性能三方面对系统进行了测试。
FAULHABER2619S024SR814:1原装冯哈伯微型